
Hardening Go

Mitigating Trusting Trust Attacks
for Compiler Security

Vivi Andersson
vivia@kth.se

March 27, 2024

1

mailto:vivia@kth.se


Vivi Andersson DD1395 Essay

1 Introduction

Since personal computers became commercially
available in the late 70’s, the number of people
who write the computer programs they run has
decreased notably. At the same time, our society
relies ever more on code. Trust is inherently
embedded in the daily usage of technology;
users trust the company, the company trusts
the developers, and the developers trust their
code. While an abstraction of complex computer
programs is necessary to make software available,
this comes with risks that end users might not be
aware of. Can we really trust the code that we run
our society on?

This question was posed by Ken Thompson in
1984 during his Turing Award lecture Reflections
on Trusting Trust [1]. Thompson showed that a
malicious actor can exploit the trust developers
put in their source code if they manage to taint
their binary files instead. Through self-inserting
code, an attacker can make the affected software
behave as they intend, and erase any malicious
code in the source [1]. Furthermore, if they target
software that is the programming language itself,
e.g. a compiler, then all software compiled by the
exploited source will be corrupted as well. Any
traces can then be deleted from the source code
while the malicious code flourishes and replicates
in the binary realm, unreadable to the human
eye.

The trusting trust attack Thompson described
intercepts the software supply chain, i.e. the
development and distribution process of software.
In recent years, the number of reported attacks of
this type has increased drastically (see Figure 1).
From 2019 to 2022 the number of reported software
packages affected by an attack has increased from
702 to 185 572 [2]. Open-source software (OSS)
is particularly susceptible to these attacks due to
availability and interdependencies among various
software components [3].

Go (or Golang) is an industry-standard free OSS,
developed by a team at Google [4]. As a popular
programming language, this makes a high-value
target for an attacker, considering the possibilities
of propagation by the go compiler, gc.

Whereas Go has various security measures built
in as a standard, the question remains if they
can protect their users from any malicious code
possibly residing in their binary releases and
bootstraps. With the inherent chain of trust in
software, taking measures to protect users from
sophisticated attacks on the software supply chain
is crucial.

Figure 1: Supply chain attacks by year since 2019
[2].

2 Scope

This essay aims to discuss trusting trust attacks as
a threat to compiler security in the context of Go.
More specifically, the viability of a trusting trust
in Go will be investigated, and possible mitigation
techniques that are already implemented. Finally,
we will discuss any vectors which are yet to be
sufficiently protected against such attacks, and
what actions are needed to secure these.

3 Supply Chain Attacks

Software supply chain attacks often exploit
software that is considered trusted, but in fact, is
infected by malware. A common way to achieve
this is by injecting the attack before a trusted
vendor digitally signs the software, a method
intended to increase trust in distributed software
[5].

Win32/Induc is a well-known example of a
software supply chain attack that affected
Windows 32-bit architectures by compromising
the Delphi compiler [6]. This attack targeted a
commonly used library of Delphi, such that when
used in compiling other programs, it would insert

2



Vivi Andersson DD1395 Essay

the malicious code into the executables. At least
three versions of this attack have been discovered,
each new version becoming more sophisticated
and severe [7].

3.1 Trusting Trust Attacks

A trusting trust attack leverages self-replication
to insert malicious code into low-level artefacts
such as compiler- or assembly binaries, which
makes them particularly difficult to detect. In this
attack, the malicious actor modifies the compiler
to recognise another pattern than the originally
defined language syntax. When the compiler then
encounters this pattern, for example compiling a
UNIX login program, the pattern serves as a trigger.
This trigger can then execute arbitrary malicious
code, such as inserting a backdoor.

Furthermore, Ken Thompson showed that if a
second pattern recognises if the program to be
compiled is a compiler itself (the process of
bootstrapping), the malicious compiler can inject
itself into the new compiler as well (see Algorithm
1). In this way, the malicious code can propagate
in every compilation of the compromised compiler.
After this, the traces in the source code of the
compiler can be deleted, as the binaries are already
compromised.

Currently, there a are no known pure trusting trust
attacks reported. On the other hand attacks like the
Win32/Induc virus which leverage self-replication
in compiler binaries have many similarities with
the trusting trust attack.

void compile(char *source) {

if (match(source, "login")) {

compile("login trojan");

return;

}

if (match(source, "c compiler")) {

compile("malicious compiler");

return;

}

}

Algorithm 1: A subverted C compiler

4 GoProgramming Language

Go was started as a project by the Google engineers
Robert Griesemer, Rob Pike and Ken Thompson
in 2007. Go aimed to address shortcomings of
programming languages in the new landscape of
complex hardware (e.g. multiprocessors) that were
arising during that time [8]. In 2009, the language
was released, and it has been growing in popularity
since then (see Figure 2).

Figure 2: Search Interest for Golang over time [9].

5 Threat Analysis

For an attacker to be able to conduct a trusting
trust attack, they need to compromise a compiler.
This can be done either by modifying a trusted
compiler or creating a new unofficial and malicious
compiler, and subverting users to download this
compiler instead.

For open-source software, the task of modifying
straight to the source can be easier than for closed
software systems, as they often are open to any
contributor. On the other hand, OSS typically also
rely on maintainers and scrutiny of the submitted
code, which can detect malicious source code
modifications. However, malicious code can still be
difficult to detect by scrutiny if the attacker utilises
obfuscation, e.g. by encoding the payload in Base64
or Hex [5].

The second approach of manipulating users to
download an unofficial compiler is also viable. An
example of an attack like this was the distribution
of XCodeGhost, a malicious version of the Apple
developer software XCode. The malicious software
was distributed through a cloud service, and
the quicker download speeds offered by them

3



Vivi Andersson DD1395 Essay

in China, in contrast to the official distribution
channel, led to a substantial number of downloads.
The malware subsequently propagated to two
applications distributed in the Apple App Store,
created using XCodeGhost [10].

The possibility of propagating malware through
a tainted compiler to other programs makes
a trusting trust attack a valuable target for a
malicious actor. If masked properly, this attack
requires relatively low effort from the attacker in
exchange for the impact on user systems. David
A. Wheeler mentions the possibility of a single
attack having the possibility to take “control over
banking systems, financial markets, militaries, or
governments” [11].

6 Mitigation Techniques

Various approaches to mitigating trusting
trust attacks have been investigated and
implemented.

6.1 Reproducible Builds

Lamb and Zacchiroli present the approach of
reproducible builds which aims at designing
software in a way that will result in identical
build artefacts for the same build inputs. They
present the viability of designing software
deterministically by the practical implementation
of making Linux Debian reproducible (see
https://reproducible-builds.org). Malicious
distributions of software can then, by relying on
reproducible builds, be discovered by comparing
checksums of a trusted distribution with the one
the user has downloaded [12].

Russ Cox, engineer at Google, reports achieving
reproducibility for the latest version of Go as of
November 2023 (version 1.21). which should allow
users to verify their build of a version is the same
as the posted binaries [13].

6.2 Debootstrapping

Reproducible builds might not be enough to
secure the absence of trusting trust attacks if
the build environment is already compromised.
The approach of debootstrapping builds aims
at minimising this attack surface by removing
the need for bootstrap binaries, i.e. prebuilt
binary versions of software. Courant et al.

propose debootstrapping compilers by compiling
a reference interpreter for a subset of the language
with a compiler written in another language. Other
approaches to debootstrapping include restoring
legacy versions which do not rely on bootstrapping
[14].

Approaches to bootstrapping Go include for
example using a previous official binary version of
Go, or their implementation in C [15]. No attempts
to debootstrap Go are found.

6.3 Diverse Double Compilation

Diverse double compilation (DDC), popularised by
David A. Wheeler, is a related approach that can
detect compromised build systems. Assuming one
trusted compiler, this one can be used to compile
another untrusted source, to detect self-inserting
code in the compiler. This technique compares
binary artefacts to detect differences [11]. DDC
requires compilers which can self-replicate, and
reproducible builds further aid this approach by
ensuring comparisons of binary files do not differ
due to non-deterministic compilations.

For Go, the reproducible version (1.21.0) should be
useful as the trusted compiler in a DDC to verify
another Go compiler [13].

7 Discussion

The three approaches of reproducible builds,
diverse double compilation (DDC) and
debootstrapping all emphasise the need to secure
software supply chains from self-inserting attacks
[12] [14] [11]. The method of reproducible builds
is a way to verify correct representations of the
distributed software. Russ Cox at Google considers
this the “best way to address” supply chain attacks
[13]. Whereas this is true for attacks such as the
XCodeGhost, which tricks users into downloading
a non-official release of software, this might not be
enough for all cases. For example, if the software
already has been affected by a trusting trust attack
residing in the source code, this approach does not
mitigate the attack. Nonetheless, this approach
does mitigate the trusting trust attacks intercepting
the distribution channel of a compiler.

4

https://reproducible-builds.org


Vivi Andersson DD1395 Essay

The method of reproducible builds also facilitates
the implementation of diverse double compilation.
DDC can detect the attacks that are already present,
and hide under official releases. Furthermore,
diverse double compilation provides a more
versatile way to mitigate these attacks, as it does
not rely on the end user building their version in
the same environment as the trusted version. Thus,
adopting reproducible builds in Go is valuable for
the effort of preventing trusting trust attacks on
a Go compiler. The approach of debootstrapping
has the role of minimising the attack surface for
self-inserting attacks and thus serves as a valuable
complement to the other two approaches.

One remaining consideration for all presented
approaches is how to make them available and
easy to use for end users. Regarding making
reproducible builds viable, this method requires
setting up a network for parallel trust exchange,
which is yet to be done [12]. Whereas this is
possible, I argue the somewhat more available
approach of verifying binaries through diverse
double compilation should be the focus. To make
the DDC approach commercially available for
single end-users the process should be automated,
which is an area for future research.

As the XCodeGhost attack discussed in Section 5
made clear, malicious code can pass on to trusted
channels if not properly scrutinised. Thus, it is
evident that the security of distribution channels
needs to be properly addressed as well. These
types of mitigation techniques are less technical
and instead on the psychology of technology use,
such as preventing social engineering techniques
adopted by attackers.

8 Conclusion

The viability of a sophisticated compiler attack like
a trusting trust attack was shown more than 30
years ago today. Whereas no pure such attacks are
known yet, the increase in software supply chain
attacks makes it evident that measures need to be
taken to prevent future attacks. Go was designed
partly by Ken Thompson himself which may have
aided in their overarching work to mitigate these
attacks, but there are still attack surfaces for Go
that need to be properly addressed.

One viable implementation of mitigation is the
diverse double compilation, which if made easily
available to all Go developers, can have an
important role in preventing trusting trust attacks
in the future. These actions are important to
take today, given the stakes at hand for software
systems around the world.

References

[1] K. Thompson, “Reflections on trusting trust,”
Commun. ACM, vol. 27, p. 761–763, aug 1984.
doi: https://doi.org/10.1145/358198.358
210.

[2] Comparitech, “Annual number of software
packages impacted by supply chain cyber
attacks worldwide from 2019 to 2023 ytd,”
March 26 2023. [https://www.statista.com
/statistics/1375128/supply-chain-attac

ks-software-packages-affected-global/

(retrieved 2023-12-01).

[3] P. Ladisa, H. Plate, M. Martinez, and
O. Barais, “Sok: Taxonomy of attacks on
open-source software supply chains,” in 2023
IEEE Symposium on Security and Privacy (SP),
(Los Alamitos, CA, USA), pp. 1509–1526, IEEE
Computer Society, may 2023.

[4] Go, “The go project,” 2023. https://go.dev
/project (retrieved 2023-11-27).

[5] M. Ohm, H. Plate, A. Sykosch, and M. Meier,
“Backstabber’s knife collection: A review of
open source software supply chain attacks,”
in Detection of Intrusions and Malware, and
Vulnerability Assessment (C. Maurice, L. Bilge,
G. Stringhini, and N. Neves, eds.), (Cham),
pp. 23–43, Springer International Publishing,
2020.

[6] Microsoft Corporation, “Virus:
Win32/induc.a,” 2009.
https://www.microsoft.com/en-us/wdsi

/threats/malware-encyclopedia-descr

iption?name=Virus%3AWin32%2FInduc.A

(retrieved 2023-12-21).

[7] R. Lipovsky, “The induc virus is back!,” Sep
2011. https://www.welivesecurity.com

/2011/09/14/the-induc-virus-is-back/

(retrieved 2023-12-21).

5

https://doi.org/10.1145/358198.358210
https://doi.org/10.1145/358198.358210
https://www.statista.com/statistics/1375128/supply-chain-attacks-software-packages-affected-global/
https://www.statista.com/statistics/1375128/supply-chain-attacks-software-packages-affected-global/
https://www.statista.com/statistics/1375128/supply-chain-attacks-software-packages-affected-global/
https://go.dev/project
https://go.dev/project
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?name=Virus%3AWin32%2FInduc.A
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?name=Virus%3AWin32%2FInduc.A
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?name=Virus%3AWin32%2FInduc.A
https://www.welivesecurity.com/2011/09/14/the-induc-virus-is-back/
https://www.welivesecurity.com/2011/09/14/the-induc-virus-is-back/


Vivi Andersson DD1395 Essay

[8] R. Pike, “Go: Ten years and climbing,” 2017.
https://commandcenter.blogspot.com/2

017/09/go-ten-years-and-climbing.html

(retrieved 2023-12-15).

[9] Google, “Google trends: Golang,” 2009–2023.
https://trends.google.com/trends/explo

re?date=2009-01-01%202023-12-15&q=gola

ng (retrieved 2023-12-15).

[10] C. Xiao, “Novel malware xcodeghost modifies
xcode, infects apple ios apps and hits
app store,” Unit 42 by Palo Alto Networks,
September 17 2015. https://unit42.pal

oaltonetworks.com/novel-malware-xcode

ghost-modifies-xcode-infects-apple-i

os-apps-and-hits-app-store/ (retrieved
2023-12-15).

[11] D. Wheeler, “Countering trusting trust
through diverse double-compiling,” in 21st
Annual Computer Security Applications
Conference (ACSAC’05), pp. 13 pp.–48, 2005.

doi: https://doi.org/10.1109/CSAC.2005.
17.

[12] C. Lamb and S. Zacchiroli, “Reproducible
builds: Increasing the integrity of software
supply chains,” IEEE Software, vol. 39, no. 2,
pp. 62–70, 2022.
doi: https://doi.org/10.1109/MS.2021.30
73045.

[13] R. Cox, “Perfectly reproducible, verified go
toolchains,” August 2023. https://go.dev/b
log/rebuild (retrieved 2023-11-27).

[14] N. Courant, J. Lepiller, and G. Scherer,
“Debootstrapping without archeology:
Stacked implementations in camlboot,” The
Art, Science, and Engineering of Programming,
vol. 6, no. 3, 2022.
doi: https://doi.org/10.22152/programmi
ng-journal.org/2022/6/13.

[15] Go, “Installing go from source,” 2023. https:
//go.dev/doc/install/source (retrieved
2023-12-21).

6

https://commandcenter.blogspot.com/2017/09/go-ten-years-and-climbing.html
https://commandcenter.blogspot.com/2017/09/go-ten-years-and-climbing.html
https://trends.google.com/trends/explore?date=2009-01-01%202023-12-15&q=golang
https://trends.google.com/trends/explore?date=2009-01-01%202023-12-15&q=golang
https://trends.google.com/trends/explore?date=2009-01-01%202023-12-15&q=golang
https://unit42.paloaltonetworks.com/novel-malware-xcodeghost-modifies-xcode-infects-apple-ios-apps-and-hits-app-store/
https://unit42.paloaltonetworks.com/novel-malware-xcodeghost-modifies-xcode-infects-apple-ios-apps-and-hits-app-store/
https://unit42.paloaltonetworks.com/novel-malware-xcodeghost-modifies-xcode-infects-apple-ios-apps-and-hits-app-store/
https://unit42.paloaltonetworks.com/novel-malware-xcodeghost-modifies-xcode-infects-apple-ios-apps-and-hits-app-store/
https://doi.org/10.1109/CSAC.2005.17
https://doi.org/10.1109/CSAC.2005.17
https://doi.org/10.1109/MS.2021.3073045
https://doi.org/10.1109/MS.2021.3073045
https://go.dev/blog/rebuild
https://go.dev/blog/rebuild
https://doi.org/10.22152/programming-journal.org/2022/6/13
https://doi.org/10.22152/programming-journal.org/2022/6/13
https://go.dev/doc/install/source
https://go.dev/doc/install/source

	Introduction
	Scope
	Supply Chain Attacks
	Trusting Trust Attacks

	Go Programming Language
	Threat Analysis
	Mitigation Techniques
	Reproducible Builds
	Debootstrapping
	Diverse Double Compilation

	Discussion
	Conclusion

